Table of Contents

1 Connection 3
 1.1 BACnet MS/TP Connection ... 3
 1.2 BACnet IP Connection ... 4

2 Configuration 5
 2.1 BACnet MS/TP Configuration ... 5
 BACnet MS/TP MAC Address ... 6
 BACnet MS/TP Frame Format ... 6
 2.2 BACnet IP Configuration ... 6
 2.3 VA's Configuration ... 7

3 BACnet Tables 9
 3.1 Indoor Unit Objects ... 9

4 Commands Reference 10
 4.1 bacnet ... 10
 4.2 line ... 10
 4.3 va ... 11
1 Connection

CoolAutomation devices support BACnet MS/TP and/or BACnet IP protocols with accordance to the ANSI/ASHRAE Standard 135-2004.

1.1 BACnet MS/TP Connection

In BACnet MS/TP mode physical connection to the CoolAutomation devices is implemented over “Two-Wire” electrical interface in accordance to EIA/TIA-485 standard. Connection is made via 485-A and 485-B terminals. Ground wire connection is not mandatory but highly recommended.

In CoolMasterNet Line L3 is recommended for BACnet MS/TP connection, although Lines L4, L5, L6 and L7 can also be used for that purpose. Picture above shows connection to Line L3.
In CooLinkNet/CooLinkHub/CooLinkBridge devices **only** Line L3 can be used for BACnet MS/TP connection.

1.2 BACnet IP Connection

BACnet IP is supported in CoolMasterNet and CooLinkNet/CooLinkHub/CooLinkBridge devices. Devices are communicating on the Ethernet TCP/IP network using UDP protocol. Physical connection in this case is made via RJ45 Ethernet connector.
2 Configuration

CoolAutomation device must be configured to support BACnet functionality. Configuration is made via CoolAutomation's proprietary ASCII_IF interface described in details in Programmer Reference Manual (PRM) document for the corresponding device.

One BACnet MS/TP and one BACnet IP connection can run simultaneously on CoolAutomation device. Additional MS/TP connections are not supported although physical interfaces may be available.

2.1 BACnet MS/TP Configuration

BACnet MS/TP interface module of CoolAutomation device has to be activated by assigning appropriate communication Line. In CoolMasterNet it is highly recommended to use Line L3, although it is possible to use any of the flowing lines: L4, L5, L6, L7 lines. Using line L3 in CooLinkNet/CooLinkHub/CooLinkBridge for BACnet MS/TP is mandatory.

CoolMasterNet BACnet MS/TP activation:

```
> line type L3 BAC
OK, Boot Required!
```

CooLinkNet/CooLinkHub/CooLinkBridge BACnet MS/TP activation:

```
> line type L3 BAC
OK, Boot Required!
```

Use `line` command to check if BACnet MS/TP module is already activated and to display it's parameters.

CoolMasterNet:

```
> line
L1: DK Master U00/G00 myid:0B
   Tx:2/2 Rx:2/2 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L2: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L3: BACnet TS:0x40(64) DEV_INST:0x000040(64) 9600_8N1
   TX:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L4: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L5: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L6: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L7: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L8: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
OK
```

CooLinkNet/CooLinkHub/CooLinkBridge:

```
> line
L1: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L2: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L3: BACnet TS:0x40(64) DEV_ID_INST:0x000040(64) 9600_8N1
   TX:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L4: M1M2 Slave U00/G00 Not Connected
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L5: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L6: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L7: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
L8: Unused
   Tx:0/0 Rx:0/0 TO:0/0 CS:0/0 Co1:0/0 NAK:0/0
OK
```
Next: VA’s have to be configured to use BACnet MS/TP module. See: VA’s Configuration.

2.1.1 BACnet MS/TP MAC Address

On MS/TP networks, MAC address or TS (This Station) address is the eight bit address used to identify devices on a single RS-485 subnet. TS can be configured with line myid command (in this example TS will be set to 0x41 or 65 decimal):

```
> line myid L3 41
OK, Boot Required!
```

TS can be queried with bacnet or line command.

2.1.2 BACnet MS/TP Frame Format

The default BACnet MS/TP frame format in CoolAutomation devices is 9600_8N1:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>9600 bps</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
</tr>
</tbody>
</table>

Frame format parameters are configurable with line baud command:

```
> line baud L3 19200_8N2
OK, Boot Required!
```

In above example frame format will become 19200 bps, 8 data bits, no parity, 2 stop bits.

2.2 BACnet IP Configuration

BACnet IP module is activated with below command:

```
> bacnet IP enable
OK, Boot Required!
```

BACnet IP server is started by device only after it establishes an Ethernet link and gets proper IP address (dynamic via DHCP or static). Ethernet and IP management is done with ifconfig command that is out of the spec of this document.

To query BACnet IP status use bacnet command without parameters:

```
> bacnet
Dev instance : 64 (0x000040)
BACnet IP : enabled
UDP port : 47808 (0xBAC0)
BACnet MSTP : L3
TS address : 64 (0x40)
OK
```

The default UDP port number used by BACnet IP Server is 47808 (0xBAC0). This is "well-known" Ethernet port assigned for the BACnet IP protocol. If required port number can be changed (new port number in example below will be 503):

```
> bacnet port 503
OK, Boot Required!
```

Next: VA’s have to be configured to use BACnet IP Server. See: VA’s Configuration.
2.3 VA’s Configuration

VA’s - Virtual Addresses are used by CoolAutomation devices in order to simplify translation of the Indoor Unit number - UID into Instance Number of the BACnet Object Identifier.

UID is a string in format Ln.XYY. For Example:
L1.102 - Indoor Unit 102 on line L1
L2.003 - Indoor Unit 003 on line L2

List of UID’s detected (visible) by CoolAutomation device can be retrieved with ls command.

```
ls
L1.100 ON 19C 30C High Fan OK # 0
L1.101 OFF 28C 23C High Cool OK - 0
```

Each UID can have none, one or a number of associated VA’s. VA’s are plain numbers starting from 1. Device can automatically allocate and associate VA’s with existing (visible by ls command) UID’s:

```
>va auto
OK
```

To query allocated VA’s use va command without parameters:

```
>va
INDOORS
L1.100 --> 0001 [Hex: 0x0011 | Dec: 00017]
L1.101 --> 0002 [Hex: 0x0021 | Dec: 00033]
OK
```

In example above UID L1.100 has a VA=0001 and UID L1.101 has a VA=0002. Numbers is '{' '}' braces are not applicable for BACnet modules (they are used for Modbus modules).

VA’s can be allocated or deallocated (deleted) all together or separately. As shown above for automatic VA’s allocation va auto command is used. It is possible to allocate VA for specific UID. For example, allocate VA 0004 for UID L1.102:

```
>va + L1.102 0004
OK
```

In this case UID does not have to be detected (visible) by CoolAutomation device at the VA allocation time. It is allowed to allocate a number of VA’s for any given UID.

To delete all allocated VA’s:

```
>va delall
OK
```

Specific VA can also be deleted (below command will delete VA 0004):

```
>va - 0004
OK
```

Alternatively all VA’s associated with specific UID can be deleted (below command will delete all VA’s associated with UID L1.102):

```
>va - L1.102
OK
```

Once VA’s are allocated BACnet MS/TP and/or BACnet IP can be used to access Indoor Unit parameters. Translation of the VA into Instance Number of the BACnet Object Identifier is made according to the scheme below:

<table>
<thead>
<tr>
<th>Object Identifier bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>VA</td>
</tr>
</tbody>
</table>

www.coolautomation.com © 2020 CoolAutomation LTD.
BACnet Tables

Supported Object Types

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Abbreviation</th>
<th>Read/Write</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Value</td>
<td>BV</td>
<td>R/W</td>
<td>5</td>
</tr>
<tr>
<td>Binary Input</td>
<td>BI</td>
<td>RO</td>
<td>3</td>
</tr>
<tr>
<td>Analog Value</td>
<td>AV</td>
<td>R/W</td>
<td>2</td>
</tr>
<tr>
<td>Analog Input</td>
<td>AI</td>
<td>RO</td>
<td>0</td>
</tr>
<tr>
<td>Multi State Value</td>
<td>MV</td>
<td>R/W</td>
<td>19</td>
</tr>
<tr>
<td>Character String Value</td>
<td>CSV</td>
<td>RO</td>
<td>40</td>
</tr>
<tr>
<td>Integer Value</td>
<td>IV</td>
<td>RO</td>
<td>45</td>
</tr>
<tr>
<td>Positive Integer Value</td>
<td>PIV</td>
<td>R/W</td>
<td>48</td>
</tr>
</tbody>
</table>

3.1 Indoor Unit Objects

<table>
<thead>
<tr>
<th>Object Identifier bits</th>
<th>Object Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>VA</td>
</tr>
<tr>
<td></td>
<td>AV</td>
</tr>
<tr>
<td></td>
<td>BI</td>
</tr>
<tr>
<td></td>
<td>BI</td>
</tr>
<tr>
<td></td>
<td>BI</td>
</tr>
<tr>
<td></td>
<td>BV</td>
</tr>
<tr>
<td></td>
<td>MV</td>
</tr>
<tr>
<td></td>
<td>MV</td>
</tr>
<tr>
<td></td>
<td>MV</td>
</tr>
<tr>
<td></td>
<td>MV</td>
</tr>
<tr>
<td></td>
<td>PIV</td>
</tr>
<tr>
<td></td>
<td>PIV</td>
</tr>
</tbody>
</table>
4 Commands Reference

4.1 bacnet
SYNOPSIS
 bacnet
 bacnet IP enable
 bacnet IP disable
 bacnet port <PORT>
 bacnet instance <DEV_INST>

DESCRIPTION
· Without parameters bacnet command displays current bacnet configuration.
· bacnet IP command is used to enable or disable BACnet IP module.
· bacnet port command is used to configure UDP port used by BACnet IP module.
· bacnet instance command is used to configure Device Instance of the Device Object Identifier. DEV_INST is a decimal number. After changing Device Instance device must be restarted.

EXAMPLE
See examples in Configuration chapter.

4.2 line
SYNOPSIS
 line
 line type <Ln> BAC
 line myid <Ln> <TS>
 line baud <Ln> <FRAME>

DESCRIPTION
 <Ln> parameter denotes communication line number like for example: L3 or L4.
· Without parameters line command prints status of all communication lines available in specific device.
· line type command is used to activate BACnet MS/TP module on line <Ln>.
· line myid command is used to change TS address. <TS> parameter should be provided as hexadecimal number without leading 0x.
· line baud command is used to change BACnet MS/TP frame format for line <Ln>. <FRAME> parameter format is <BAUD>-<8|9>-<N|E|O>-<1|2>. Supported baud rates for <BAUD> parameter are: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200. Frame format change is effective only after power reset.

EXAMPLE
See examples in BACnet MS/TP Configuration chapter.
4.3 va

SYNOPSIS

- va
- va auto
- va + <UID> <VA>
- va delall
- va - <UID>|<VA>
- va ram <N>

DESCRIPTION

- `<UID>` parameter denotes Indoor Unit identifier/number like for example: L1.100 or L2.003. `<VA>` parameter denotes VA number in decimal format.
- Without parameters `va` command prints status of all allocated VA's.
- `va auto` command is used to automatically distribute VA's for all detected UID's one to one. Previously allocated VA's will be deleted.
- `va + <UID> <VA>` command will allocate VA for given UID. Number of VA's allocated for UID is not limited.
- `va delall` command will delete all allocated VA's.
- `va - <UID>` will delete all allocated VA's for given UID.
- `va - <VA>` will delete specific VA.
- `va ram <N>` resizes RAM memory used for VA's. Parameter `<N>` denotes a desired total number of VA's that can be allocated. By default N=170. VA's memory resize is effective only after power reset.

EXAMPLE

See examples in VA's Configuration chapter.